Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 251
Filtrar
1.
J Ethnopharmacol ; 329: 118149, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580188

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Calcium oxalate crystals play a key role in the development and recurrence of kidney stones (also known as urolithiasis); thus, inhibiting the formation of these crystals is a central focus of urolithiasis prevention and treatment. Previously, we reported the noteworthy in vitro inhibitory effects of Aspidopterys obcordata fructo oligosaccharide (AOFOS), an active polysaccharide of the traditional Dai medicine Aspidopterys obcordata Hemsl. (commonly known as Hei Gai Guan), on the growth of calcium oxalate crystals. AIM OF THE STUDY: To investigated the effectiveness and mechanism of AOFOS in treating kidney stones. MATERIALS AND METHODS: A kidney stones rats model was developed, followed by examining AOFOS transport dynamics and effectiveness in live rats. Additionally, a correlation between the polysaccharide and calcium oxalate crystals was studied by combining crystallization experiments with density functional theory calculations. RESULTS: The results showed that the polysaccharide was transported to the urinary system. Furthermore, their accumulation was inhibited by controlling their crystallization and modulating calcium ion and oxalate properties in the urine. Consequently, this approach helped effectively prevent kidney stone formation in the rats. CONCLUSIONS: The present study emphasized the role of the polysaccharide AOFOS in modulating crystal properties and controlling crystal growth, providing valuable insights into their potential therapeutic use in managing kidney stone formation.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38652094

RESUMO

The high photoelectric conversion efficiency and low cost of perovskite solar cells (PSCs) have further inspired people's determination to push this technology toward industrialization. The high-quality perovskite films and high-efficiency and stable PSCs are the crucial factors. Ionic liquids have been proven to be an effective strategy for regulating high-quality perovskite films and high-performance PSCs. However, the regulation mechanism between ionic liquids and perovskites still needs further clarification. In this study, a novel sulfonic acid-functionalized ionic liquid, 1-butyl-3-methylimidazolium trifluoromethanesulfonate (BSO3HMImOTf), was used as an effective additive to regulate high-quality perovskite films and high-performance devices. Microscopic mechanism studies revealed strong interactions between BSO3HMImOTf and Pb2+ ions as well as halogens in the perovskite. The perovskite film is effectively passivated with the controlled crystal growth, suppressed ion migration, facilitating to the greatly improved photovoltaic performance, and superior long-term stability. This article reveals the regulatory mechanism of sulfonic acid type ionic liquids through testing characterization and mechanism analysis, providing a new approach for the preparation of high-quality perovskite devices.

3.
J Hazard Mater ; 470: 134183, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574663

RESUMO

Nanomaterials present a vast potential as functional materials in environmental engineering. However, there are challenges with nanocomplex for recyclability, reliable/stable, and scale-up industrial integration. Here, a versatile, low-cost, stable and recycled easily metal-polyphenolic-based material carried by wood powder (bioCar-MPNs) adsorption platform was nano-engineered by a simple, fast self-assembly strategy, in which wood powder is an excellent substrate serving as a scaffold and stabilizer to prevent the nanocomplex from aggregating and is easier to recycle. Life cycle analysis highlights a green preparation process and environmental sustainability for bioCar-MPNs. The metal-polyphenolic nanocomplex coated on the wood surface in bioCar-MPNs presents a remarkable surface adsorption property (1829.4 mg/g) at a low cost (2.4 US dollars per 1000 g bioCar-MPNs) for organic dye. Quartz crystal microbalance analysis (QCM) demonstrates an existing strong affinity between polyphenols and organic dyes. Furthermore, Independent Gradient Model (IGM) and Hirshfeld surface analysis reveal the presence of the electrostatic interactions, π-π interactions, and hydrogen bonding. Meanwhile, adsorption efficiency of bioCar-MPNs maintains over 95% in the presence of co-existing ions (Na+, 0.5 M). Importantly, the reasonable utilization of biomass for water treatment can contribute to achieving the high-value and resource utilization of biomass materials.

4.
Int J Biol Macromol ; 261(Pt 2): 129822, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307437

RESUMO

The impact of citric acid, carboxymethyl cellulose, carboxymethyl starch, sodium trimetaphosphate, or soybean protein on the crosslinking of starch-based films was examined. These crosslinking starch films were then used to create pH-sensitive food labels using a casting method. Blueberry anthocyanins were incorporated into these smart labels as a pH-sensitive colorimetric sensor. The mechanical properties, moisture resistance, and pH responsiveness of these smart labels were then examined. Crosslinking improved the mechanical properties and pH sensitivity of the labels. These different crosslinking agents also affected the hydrophobicity of the labels to varying degrees. Soybean protein was the only additive that led to labels that could sustain their structural integrity after immersion in water for 12 h. Because it increased the hydrophobicity of the labels, which decreased their water vapor permeability, moisture content, swelling index, and water solubility by 47 %, 29 %, 52 % and 10 %, respectively. The potential of using these labels to monitor the freshness of chicken breast was then examined. Only the films containing soybean protein exhibited good pH sensitivity, high structural stability, and low pigment leakage. This combination of beneficial attributes suggests that the composite films containing starch and soybean protein may be most suitable for monitoring meat freshness.


Assuntos
Antocianinas , Proteínas de Soja , Antocianinas/química , Carne , Permeabilidade , Amido/química , Embalagem de Alimentos , Concentração de Íons de Hidrogênio
5.
Angew Chem Int Ed Engl ; 63(16): e202401394, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396356

RESUMO

Carbohydrates play pivotal roles in an array of essential biological processes and are consequently involved in many diseases. To meet the needs of glycobiology research, chemical enzymatic and non-enzymatic methods have been developed to generate glycoconjugates with well-defined structures. Herein, harnessing the unique properties of C6-oxidized glycans, we report a straightforward and robust strategy for site- and stereoselective glycomodification of biomolecules with N-terminal tryptophan residues by a carbohydrate-promoted Pictet-Spengler reaction, which is not adapted to typical aldehyde substrates under biocompatible conditions. This method reliably delivers highly homogeneous glycoconjugates with stable linkages and thus has great potential for functional modulation of peptides and proteins in glycobiology research. Moreover, this reaction can be performed at the glycosites of glycopeptides, glycoproteins and living-cell surfaces in a site-specific manner. Control experiments indicated that the protected α-O atom of aldehyde donors and free N-H bond of the tryptamine motif are crucial for this reaction. Mechanistic investigations demonstrated that the reaction exhibited a first-order dependence on both tryptophan and glycan, and deprotonation/rearomatization of the pentahydro-ß-carbolinium ion intermediate might be the rate-determining step.


Assuntos
Carboidratos , Triptofano , Triptofano/química , Proteínas/química , Aldeídos/química , Polissacarídeos , Glicoconjugados
6.
Environ Pollut ; 346: 123623, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387545

RESUMO

Microplastics (MPs), pollutants detected at high frequency in the environment, can be served as carriers of many kinds of pollutants and have typical characteristics of environmental persistence and bioaccumulation. The potential risks of MPs ecological environment and health have been widely concerned by scholars and engineering practitioners. Previous reviews mostly focused on the pollution characteristics and ecological toxicity of MPs, but there were few reviews on MPs analysis methods, aging mechanisms and removal strategies. To address this issue, this review first summarizes the contamination characteristics of MPs in different environmental media, and then focuses on analyzing the detection methods and analyzing the aging mechanisms of MPs, which include physical aging and chemical aging. Further, the ecotoxicity of MPs to different organisms and the associated enhanced removal strategies are outlined. Finally, some unresolved research questions related to MPs are prospected. This review focuses on the ageing and ecotoxic behaviour of MPs and provides some theoretical references for the potential environmental risks of MPs and their deep control.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos/toxicidade , Microplásticos/análise , Plásticos/toxicidade , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise
7.
Int. microbiol ; 27(1): 67-79, Feb. 2024. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-230244

RESUMO

Complete ammonia oxidation (comammox) bacteria can complete the whole nitrification process independently, which not only challenges the classical two-step nitrification theory but also updates long-held perspective of microbial ecological relationship in nitrification process. Although comammox bacteria have been found in many ecosystems in recent years, there is still a lack of research on the comammox process in rhizosphere of emergent macrophytes in lakeshore zone. Sediment samples were collected in this study from rhizosphere, far-rhizosphere, and non-rhizosphere of emergent macrophytes along the shore of Lake Liangzi, a shallow lake. The diversity of comammox bacteria and amoA gene abundance of comammox bacteria, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) in these samples were measured. The results showed that comammox bacteria widely existed in the rhizosphere of emergent macrophytes and fell into clade A.1, clade A.2, and clade B, and clade A was the predominant community in all sampling sites. The abundance of comammox amoA gene (6.52 × 106–2.45 × 108 copies g−1 dry sediment) was higher than that of AOB amoA gene (6.58 × 104–3.58 × 106 copies g−1 dry sediment), and four orders of magnitude higher than that of AOA amoA gene (7.24 × 102–6.89 × 103 copies g−1 dry sediment), suggesting that the rhizosphere of emergent macrophytes is more favorable for the growth of comammox bacteria than that of AOB and AOA. Our study indicated that the comammox bacteria may play important roles in ammonia-oxidizing processes in all different rhizosphere regions.(AU)


Assuntos
Humanos , Rizosfera , Microbiologia do Solo , Amônia , Lagos/microbiologia , Archaea , Oxirredução , Microbiologia , Técnicas Microbiológicas , Ecossistema
8.
ACS Appl Mater Interfaces ; 16(7): 9078-9087, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38326938

RESUMO

Piezoelectric ceramics, as essential components of actuators and transducers, have captured significant attention in both industrial and scientific research. The "entropy engineering" approach has been demonstrated to achieve excellent performance in lead-based materials. In this study, the "entropy engineering" approach was employed to introduce the morphotropic phase boundary (MPB) into the bismuth ferrite (BF)-based lead-free system. By employing this strategy, a serial of novel "medium to high entropy" lead-free piezoelectric ceramics were successfully synthesized, namely (1-x)BiFeO3-x(Ba0.2Sr0.2Ca0.2Bi0.2Na0.2)TiO3 (BF-xBSCBNT, x = 0.15-0.5). Our investigation systematically examined the phase structure, domain configuration, and ferroelectric/piezoelectric properties as a function of conformational entropy. Remarkable performances with a largest strain of 0.50% at 100 kV/cm, remanent polarization ∼40.07 µC/cm2, coercive field ∼74.72 kV/cm, piezoelectric coefficient ∼80 pC/N, and d33* ∼500 pm/V were achieved in BF-0.4BSCBNT ceramics. This exceptional performance can be attributed to the presence of MPB, coexisting rhombohedral and cubic phases, along with localized nanodomains. The concept of high-entropy lead-free piezoelectric ceramics in this study provides a promising strategy for the exploration and development of the next generation of lead-free piezoelectric materials.

9.
ISA Trans ; 147: 328-336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290863

RESUMO

The mechanical properties serve as crucial quality indicators for cold-rolled strips. For a long time, the mechanical properties mechanism and data-driven models can't comprehensively consider sufficient factors to achieve high-accuracy prediction due to the "data-isolated island" between production lines. In this research, we introduce a multi-process collaborative platform based on the industrial internet system. This platform is designed to enable real-time collection of diverse and heterogeneous data from both upstream and downstream processes of cold rolling. On this basis, a novel mechanical properties interval prediction model is proposed using the sparrow search algorithm to optimize fast learning network under the LUBE framework. We trained the model by using a dataset collected from a large steel plant. Based on the rolling theory and Pearson correlation coefficient, 25 features are selected as the inputs of the prediction model. The experimental results and comparison show that the proposed model is feasible and outperforms other machine learning models, such as the artificial bee colony algorithm optimized extreme learning machine and back propagation neural network model.

10.
Life Sci Space Res (Amst) ; 40: 115-125, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38245336

RESUMO

The circadian clock extensively regulates physiology and behavior. In space, astronauts encounter many environmental factors that are dramatically different from those on Earth; however, the effects of these factors on circadian rhythms and the mechanisms remain largely unknown. The present study aimed to investigate the changes in the mouse diurnal rhythm and gut microbiome under simulated space capsule conditions, including microgravity, noise and low atmospheric pressure (LAP). Noise and LAP were loaded in the capsule while the conditions in the animal room remained constant. The mice in the capsule showed disturbed locomotor rhythms and faster adaptation to a 6-h phase advance. RNA sequencing of hypothalamus samples containing the suprachiasmatic nucleus (SCN) revealed that microgravity simulated by hind limb unloading (HU) and exposure to noise and LAP led to decreases in the quantities of differentially expressed genes (DEGs), including circadian clock genes. Changes in the rhythmicity of genes implicated in pathways of cardiovascular deconditioning and more concentrated phases were found under HU or noise and LAP. Furthermore, 16S rRNA sequencing revealed dysbiosis in the gut microbiome, and noise and LAP may repress the temporal discrepancy in the microbiome community structure induced by microgravity. Changes in diurnal oscillations were observed in a number of gut bacteria with critical physiological consequences on metabolism and immunodefense. We also found that the superimposition of noise and LAP may repress normal changes in global gene expression and adaptation in the gut microbiome. Our data demonstrate that in addition to microgravity, exposure to noise and LAP affect the robustness of circadian rhythms and the community structure of the gut microbiome, and these factors may interfere with each other in their adaptation to respective conditions. These findings are important for furthering our understanding of the alterations in circadian rhythms in the complex environment of space.


Assuntos
Microbioma Gastrointestinal , Ausência de Peso , Camundongos , Animais , Ausência de Peso/efeitos adversos , RNA Ribossômico 16S/genética , Ritmo Circadiano/genética , Pressão Atmosférica
11.
Sci Total Environ ; 912: 168822, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043821

RESUMO

The preparation of biochar from digestate is one of the effective ways to achieve the safe disposal and resource utilization of digestate. Nevertheless, up to now, a comprehensive review encompassing the factors influencing anaerobic digestate-derived biochar production and its applications is scarce in the literature. Therefore, to fill this gap, the present work first outlined the research hotspots of digestate in the last decade using bibliometric statistical analysis with the help of VOSviewer. Then, the characteristics of the different sources of digestate were summarized. Furthermore, the influencing factors of biochar preparation from digestate and the modification methods of digestate-derived biochar and associated mechanisms were analyzed. Notably, a comprehensive synthesis of anaerobic digestate-derived biochar applications is provided, encompassing enhanced anaerobic digestion, heavy metal remediation, aerobic composting, antibiotic/antibiotic resistance gene removal, and phosphorus recovery from digestate liquor. The economic and environmental impacts of digestate-derived biochar were also analyzed. Finally, the development prospect and challenges of using biochar from digestate to combat environmental pollution are foreseen. The aim is to not only address digestate management challenges at the source but also offer a novel path for the resourceful utilization of digestate.


Assuntos
Carvão Vegetal , Recuperação e Remediação Ambiental , Meio Ambiente , Poluição Ambiental , Anaerobiose
12.
Int Microbiol ; 27(1): 67-79, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062210

RESUMO

Complete ammonia oxidation (comammox) bacteria can complete the whole nitrification process independently, which not only challenges the classical two-step nitrification theory but also updates long-held perspective of microbial ecological relationship in nitrification process. Although comammox bacteria have been found in many ecosystems in recent years, there is still a lack of research on the comammox process in rhizosphere of emergent macrophytes in lakeshore zone. Sediment samples were collected in this study from rhizosphere, far-rhizosphere, and non-rhizosphere of emergent macrophytes along the shore of Lake Liangzi, a shallow lake. The diversity of comammox bacteria and amoA gene abundance of comammox bacteria, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) in these samples were measured. The results showed that comammox bacteria widely existed in the rhizosphere of emergent macrophytes and fell into clade A.1, clade A.2, and clade B, and clade A was the predominant community in all sampling sites. The abundance of comammox amoA gene (6.52 × 106-2.45 × 108 copies g-1 dry sediment) was higher than that of AOB amoA gene (6.58 × 104-3.58 × 106 copies g-1 dry sediment), and four orders of magnitude higher than that of AOA amoA gene (7.24 × 102-6.89 × 103 copies g-1 dry sediment), suggesting that the rhizosphere of emergent macrophytes is more favorable for the growth of comammox bacteria than that of AOB and AOA. Our study indicated that the comammox bacteria may play important roles in ammonia-oxidizing processes in all different rhizosphere regions.


Assuntos
Amônia , Archaea , Archaea/genética , Rizosfera , Ecossistema , Lagos/microbiologia , Oxirredução , Filogenia , Bactérias , Microbiologia do Solo
13.
Int J Biol Macromol ; 256(Pt 2): 128487, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042324

RESUMO

CotA laccases are multicopper oxidases known for promiscuously oxidizing a broad range of substrates. However, studying substrate promiscuity is limited by the complexity of electron transfer (ET) between substrates and laccases. Here, a systematic analysis of factors affecting ET including electron donor acceptor coupling (ΗDA), driving force (ΔG) and reorganization energy (λ) was done. Catalysis rates of syringic acid (SA), syringaldehyde (SAD) and acetosyringone (AS) (kcat(SAD) > kcat(SA) > kcat(AS)) are not entirely dependent on the ability to form phenol radicals indicated by ΔG and λ calculated by Density Functional Theory (SA < SAD ≈ AS). In determined CotA/SA and CotA/SAD structures, SA and SAD bound at 3.9 and 3.7 Å away from T1 Cu coordinating His419 ensuring a similar ΗDA. Abilities of substrate to form phenol radicals could mainly account for difference between kcat(SAD) and kcat(SA). Furthermore, substrate pocket is solvent exposed at the para site of substrate's phenol hydroxyl, which would destabilize binding of AS in the same orientation and position resulting in low kcat. Our results indicated shallow partially covered binding site with propensity of amino acids distribution might help CotA discriminate lignin-phenol derivatives. These findings give new insights for developing specific catalysts for industrial application.


Assuntos
Lacase , Lignina , Lacase/química , Lignina/metabolismo , Fenol , Transporte de Elétrons , Fenóis
14.
J Hazard Mater ; 462: 132757, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37865072

RESUMO

Accelerated eutrophication in lakes reduces the number of submerged macrophytes and alters the residues of glyphosate and its degradation products. However, the effects of submerged macrophytes on the fate of glyphosate remain unclear. We investigated eight lakes with varying trophic levels along the middle and lower reaches of the Yangtze River in China, of which five lakes contained either glyphosate or aminomethylphosphate (AMPA). Glyphosate and AMPA residues were significantly positively correlated with the trophic levels of lakes (P < 0.01). In lakes, glyphosate is degraded through the AMPA and sarcosine pathways. Eight shared glyphosate-degrading enzymes and genes were observed in different lake sediments, corresponding to 44 degrading microorganisms. Glyphosate concentrations in sediments were significantly higher in lakes with lower abundances of soxA (sarcosine oxidase) and soxB (sarcosine oxidase) (P < 0.05). In the presence of submerged macrophytes, oxalic and malonic acids secreted by the roots of submerged macrophytes increased the abundance of glyphosate-degrading microorganisms containing soxA or soxB (P < 0.05). These results revealed that a decrease in the number of submerged macrophytes in eutrophic lakes may inhibit glyphosate degradation via the sarcosine pathway, leading to a decrease in glyphosate degradation and an increase in glyphosate residues.


Assuntos
Lagos , Sarcosina , Lagos/química , Sarcosina Oxidase , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Exsudatos e Transudatos , China , Eutrofização , 60658
15.
Nanoscale ; 16(3): 1247-1253, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38116609

RESUMO

Graphene's unique gapless band structure and remarkably large third-order optical susceptibility have drawn significant attention to its nonlinear optical response, particularly in the context of coherent anti-Stokes Raman scattering (CARS). Under the combined influence of phononic and electronic resonances, the CARS response of graphene has been observed to exhibit a distinctive feature of time-resolved dip-to-peak evolution. Here, we report a greatly enhanced double resonance Raman mode beyond the G mode of multi-layer graphene with broadband CARS measurements. The significant difference in the intensity ratio between CARS and SR for this mode may be attributed to the preferential activation of low-frequency phonons in the impulsive stimulated Raman scattering process (ISRS) and a lower dephasing rate. Our results build on a foundation towards a deeper exploration of the coherent Raman response of two-dimensional materials.

16.
Mol Neurobiol ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38110648

RESUMO

Previous studies have indicated that iron disorder, inflammation, and autophagy play an important role in traumatic brain injury (TBI). The triggering receptor expressed on myeloid cells 2 (TREM2), an immunoglobulin superfamily transmembrane receptor, is involved in inflammation. However, the role of TREM2 in modulating the microglia response in TBI has been rarely investigated. The present study aimed to investigate if the iron chelator deferoxamine (DFO) could ameliorate TBI through autophagy mediated by the TREM2. TBI was developed by the controlled cortical impact (CCI) mouse model and stretching of individual primary cortical microglia taken from the tissue of the rat brain. DFO was intraperitoneally used for intervention. Western blotting assay, qRT-PCR, TUNEL staining, immunofluorescence staining, confocal microscopy analysis, transmission electron microscopy, H&E staining, brain water content measurement, and the neurobehavioral assessments were performed. TREM2 expression was up-regulated in cortex of TBI mice model and in microglia stretching model, which was attenuated by DFO. After the mice were subjected to CCI, DFO treatment significantly up-regulated the protein levels of autophagy compared with the TBI group at 3 days and caused an increase of autophagic vacuoles. Treatment with DFO reduced TBI-induced cell apoptosis, cerebral edema, neuroinflammation, and motor function impairment in mice, at least partly via the mTOR signaling pathway that facilitates the TREM2 activity. The results indicated that the maintenance of iron homeostasis by DFO plays neuroprotection by modulating the inflammatory response to TBI through TREM2-mediated autophagy. This study suggested that TREM2-mediated autophagy might be a potential target for therapeutic intervention in TBI.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38158486

RESUMO

The issue of environmental pollution caused by the widespread presence of microplastics (MPs) in environmental media has garnered significant attention. However, research on MPs pollution has mainly focused on aquatic ecosystems in recent years. The sources and pollution characteristics of MPs in the environment, especially in solid waste, have not been well-described. Additionally, there are few reports on the ecotoxicity of MPs, which highlights the need to fill this gap. This review first summarizes the occurrence characteristics of MPs in water, soil, and marine environments, and then provides an overview of their toxic effects on organisms and the relevant mechanisms. This paper also provides an outlook on the hotspots of research on pollution characterization and ecotoxicity of MPs. Finally, this review aims to provide insights for future ecotoxicity control of MPs. Overall, this paper expands our understanding of the pollution characteristics and ecological toxicity of MPs in current environmental media, providing forward-looking guidance for future research.

18.
ACS Nano ; 17(20): 20237-20245, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37791737

RESUMO

The atomic doping of open-shell nanographenes enables precise tuning of their electronic and magnetic states, which is crucial for their promising potential applications in optoelectronics and spintronics. Among this intriguing class of molecules, triangulenes stand out with their size-dependent electronic properties and spin states, which can also be influenced by the presence of dopant atoms and functional groups. However, the occurrence of Jahn-Teller distortions in such systems can have a crucial impact on their total spin and requires further theoretical and experimental investigation. In this study, we examine the nitrogen-doped aza-triangulene series via a combination of density functional theory and on-surface synthesis. We identify a general trend in the calculated spin states of aza-[n]triangulenes of various sizes, separating them into two symmetry classes, one of which features molecules that are predicted to undergo Jahn-Teller distortions that reduce their symmetry and thus their total spin. We link this behavior to the location of the central nitrogen atom relative to the two underlying carbon sublattices of the molecules. Consequently, our findings reveal that neutral centrally doped aza-triangulenes have one less radical than their undoped counterparts, irrespective of their predicted symmetry. We follow this by demonstrating the on-surface synthesis of π-extended aza-[5]triangulene, a large member of the higher symmetry class without Jahn-Teller distortions, via a simple one-step annealing process on Cu(111) and Au(111). Using scanning probe microscopy and spectroscopy combined with theoretical calculations, we prove that the molecule is positively charged on the Au(111) substrate, with a high-spin quintet state of S = 2, the same total spin as undoped neutral [5]triangulene. Our study uncovers the correlation between the dopant position and the radical nature of high-spin nanographenes, providing a strategy for the design and development of these nanographenes for various applications.

19.
PLoS One ; 18(8): e0290265, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37639433

RESUMO

Spatial damage identification is of great significance in mechanical, aerospace, and civil engineering. In this study, a data coupling method based on continuous wavelet transform (CWT) is proposed to identify the spatial damage location of beam-type structures. The singularity of the wavelet coefficient can be used to identify the signal singularity, and data coupling method calculates the spatial location of the damage. Numerical simulations and experimental analyses of different type of beams with transfixion damage are carried out to evaluate the accuracy of the method. The results show that the wavelet based data coupling method (W-DCM) can identify the minimum 4.9% damage severity of fixed beam and continuous beam, and can also identify the damage of non-free end of cantilever beam. However, the 9.7% damage severity of the free end of the cantilever beam cannot be identified. It is also found that the W-DCM can effectively circumvent the problem of wavelet coefficients edge effect. This method and wavelet singularity are used to provide a solution to the problem of structural edge damage identification.

20.
Bioresour Technol ; 387: 129647, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37567350

RESUMO

In light of the characteristics of excessive acidification and low biogas yield during kitchen waste (KW) dry digestion, the impact of the calcium oxide (CaO) on KW mesophilic dry digestion was investigated, and the enhanced mechanism was revealed through metagenomic approach. The results showed that CaO increased the biogas production, when the CaO dosage was 0.07 g/g (based on total solid), the biogas production reached 656.84 mL/g suspended solids (VS), approximately 8.38 times of that in the control. CaO promoted the leaching and hydrolysis of key organic matter in KW. CaO effectively promoted the conversion of volatile fatty acid (VFA) and mitigated over-acidification. Macrogenome analysis revealed that CaO increased the microbial diversity in KW dry digestion and upregulated the abundance of genes related to amino acid and carbohydrates metabolism. This study provides an effective strategy with potential economic benefits to improve the bioconversion efficiency of organic matter in KW.


Assuntos
Biocombustíveis , Ácidos Graxos Voláteis , Anaerobiose , Ácidos Graxos Voláteis/metabolismo , Compostos de Cálcio , Metano/metabolismo , Reatores Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...